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ABSTRACT: Let n points be arbitrarily placed in B(D), a disk in R
2
 having diameter D. Denote by lij the Euclidean 

distance between point i and j. The main result of this paper is to show that 
4018.0

)(min
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. We then raise a conjecture 

that the optimal denominator of the right hand side is 4/9 . The special case n = 3 is proved. Our results have a direct 

application for the best successful data transmission in wireless networks. 
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1. INTRODUCTION 
Denote by arg minj∈J{Sj} the index of the smallest point in 

the set {Sj} (j∈ J). The following result was established in 

[1] to estimate upper bounds on the maximum number of 

simultaneously successful wireless transmissions and the 

maximum achievable per node end-to-end throughput under 

the general network scenario. For more results see [2-13]. 

Theorem 1.1 ([1]). Let B(D) be a disk in R
2
 having diameter 

D. Let n points be arbitrarily placed in B(D). Suppose each 

point is indexed by a distinct integer between 1 and n. Let lij 

be the Euclidean distance between point i and j. Define the 

mth closest point to point i, aim, and the Euclidean distance 

between point i and the mth closest point to point i, uim, as 

follows: 

ai1:=arg min j{1,2,…,n}, {lij},   1≤ i ≤ n, 

                                                 j ≠ i 

ai1:=arg min j{1,2,…,n}, {lij},   1≤ i ≤ n, 2≤ m ≤ n-1, 

j{i}  
1
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imial  ,  1≤ i ≤ n, 1≤ m ≤ n-1, 

Then 
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In [2] observed that the interpoint distance sum inequality 

(1.1) can be simply but significantly strengthened with a 

proof following from (1.1) and the fact that uim ≤ D. 

Proposition 1.2 ([2]). Define B(D), D,n,lij,aim,uim,ci as in 

Theorem 1.1. Then 
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   1≤ m ≤ n-1                     (1.2) 

As a direct application, In [2] improved the upper bounds on 

the maximum number of simultaneously successful wireless 

transmissions and the maximum achievable per-node end-

toend throughput under the same general network scenario 

as in Arpacioglu and Haas [1]. Later, we refined a special 

case of the interpoint distance sum inequality (1.1) when    

m = 1 as follows. 

Theorem 1.3 ([3]). Define B(D), D,n,lij,aim,uim, as in 

Theorem 1.1. Then 
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In this article, we make a further improvement of Theorem 

1.3, that is, the denominator of the right hand of the 

inequality (1.3), 0.3972, can be strengthened to be 0.4018. It 

is unknown what the optimal denominator is. We conjecture 

4/9 is optimal and we show it is true for the special case       

n = 3. Finally, we use the similar approach to refine 

Proposition 1.2. This article is organized as follows. In 

section 2, Theorem 1.3 is improved and a conjecture is 

raised. In section 3, we use the similar approach to further 

improve Proposition 1.2. Conclusions are made in section 4. 

2. MAIN RESULT 

In this section, we improve Theorem 1.3 and then raise a 

conjecture. We need two lemmas. 

Lemma 2.1. Define B(D), D,n,lij,aim,uim, as in Theorem 1.1. 

Then for all i≠k≠l≠i, 
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Proof. Let n points in B(D) whose center is denoted by O. 

For any three different points i≠k≠l≠i, without loss of 

generality, we assume 

ui1 ≥ uk1 ≥ ul1                                                                   (2.2) 

The inequality (2.1) clearly holds if ui1 < D
2

3 . Below we 

further assume ui1 ≥ D
2

3
. Let the point j be such that         

lij = ui1, that is, we have that 

 

lij ≤ lij',   j' ≠ j                                                             (2.3) 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 1: The left-

hand side disk is 

Bi(ui1) and the 

right-hand side is B(D) 

 

Denote by Bi(ui1) be the disk of diameter ui1 and center i. 

Then O is in the interior of Bi(ui1) and j is on the boundary 

of Bi(ui1). Denote by A and B the two intersecting points of 

disks B(D) and Bi(Ui1), respectively. Let C be the point on 

the boundary of B(D) such that the three points C, i and O  

are on a straight line in order. To make it clear, we mark 

them in Figure 1. 
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By the knowledge of plane geometry, we have 

,)cos(
D
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ACO                                                          (2.4) 

,
)sin()sin( AiO

AC

ACO

Ai


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where |AC| denotes the distance between A and C, ∠ACO is 

the angle with C being the vertex and the other two, A and O 

on the legs, |Ai| and ∠AiO are defined similarly. Since 

∠ACO ≤ ∠AiO and |Ai| = ui1, we have 
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Therefore, we have 
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  where the equality (2.7) follows from the cosine theorem, 

the equality (2.8) is because |Ai| =|Bi| = ui1 and ∠AiO = 

∠BiO, the inequality (2.10) holds due to Inequality (2.6) and 

the finally inequality is true since DuD ui
2

3
  as 

assumed and the function f(x) = x
2
(1 − x

2
) is strict 

decreasing for ]1,2/3[/1  Dux i
. Furthermore, Equality 

(2.8), Inequality (2.12) and the fact D ≥ ui1 ≥ D
2

3
 imply 

8

3

2

4

3

2

3

2

2
)cos(

2

22

2

1

22

1








D

DD

u

ABu
AiB

i

i  

It follows that ∠AiB is an acute angle. According to 

Equation (2.3), any other points j' (i≠j'≠j) is in B(D)\Bi(ui1), 

i.e., the shadow of Figure 1. We notice that the maximum 

Euclidean distance between any two points in B(D)\Bi(ui1) is 

|AB| since ∠AiB is an acute angle. Therefore, 
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where Inequality (2.14) follows from Inequality (2.10) and 

the final inequality (2.16) holds since D ≥ ui1 ≥  D
2

3  as 

assumed and the function f(x) = x
2
(9 − 8x

2
) is strict 

decreasing for  
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Lemma 2.2. Define B(D),D, n, lij , aim, uim as in Theorem 

1.1. Then for any increasing concave function f(√x) and all 

indices i ≠ k ≠l ≠ i, 
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Proof. According to Lemma 2.1, it is sufficient to consider 

the following optimization problem                          
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Since f(√x) is concave, by Jensen’s inequality, we have 
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Figure 2: Computation of the overlap ratio between B(D) and 

Bs(uim). 

Theorem 2.1. Define B(D),D, n, lij , aim, uim as in Theorem 

1.1. Then 
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Proof. The case n = 2 is trivial to verify since ui1 ≤ D. So we 

assume n ≥ 3. The first part of this proof is based on that of 

Theorem 1.1 [1]. Denote the disk of diameter x and center i 

by Bi(x). Define the following sets of disks 

R1 := {Bi(ui1) : 1 ≤ i ≤ n}. 

As shown in [1], all disks in R1 are non-overlapping, i.e., the 

distance between the centers of any two disks is greater than 

or equal to the sum of the radii of the two disks. Denote by 

A(X) the area of a region X. We try to find a lower bound on 

fi1 := A(B(D) ∩ Bi(ui1)) /  A(Bi(ui1)) 

for every 1 ≤ i ≤ n. Pick any point S from the boundary of 

B(D) and consider the overlap ratio 
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Using Figure 2, one can obtain the geometrical computation 

formula: 
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and f(0) = limy→0 f(y) = 0.5. 
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Adding all the n inequalities in (2.25), we obtain 
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Since all disks in R1 are non-overlapping, we have 
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Notice that A(B(D)) =  D
2
/ 4 and A(Bi(ui1)) =  u

2
i1/ 4. 
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following optimization problem (n ≥ 3): 
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Introducing 
D

u
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1:  for i = 1,… , n, the above optimization 

problem (2.29)-(2.31) is equivalent to 
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where 
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It is not difficult to verify that the above function F(y) is 

strictly increasing and strictly convex for y in its domain   

[0, 1]. The variations of F(y) and its first derivative F'(y) are 

shown in Figure 4. We can also verify that F(√x) is an 

increasing concave function for x∈ [0, 1], as shown in 

Figure 3. According to Lemma 2.2, we can further add 

inequalities in Problem (2.32)-(2.34): 
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Figure 3: Variation of F(y) and F'(y). 

 

 

 

 

 

 

 

 

 

 

Figure 4: Variation of F(√x) and (F(√x))′. 

 

 

 

 

 

 

 

 

 
Figure 5: Variation of (F−1(x))2 and ((F−1(x))2)'. 

 

Let xi = F(yi) for i = 1,… , n, or equivalently, yi = F
−1

(xi) 

where F
−1

(.) is the inverse function for F(.) and it exists 

since F(…) is strictly increasing in its domain. Therefore, 

based on this one-to-one mapping, Problem (2.32)-(2.34) is 

equivalent to 
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The objective function (2.37) is separable and convex for 

(xi) ∈ [0, F(1)]
n
. The variations of (F

−1
(x))

2
 and its first 

derivative function are shown in Figure 5. Besides, the 

feasible region defined by (2.38)-(2.40) is a convex 

polyhedron. The strict convexity of (F
−1

(x))
2
 implies that 

Problem (2.37)-(2.40) is a polyhedral concave programming 

problem. By making use of [4. Corollary 32.3.4], every 

optimal solution of Problem (2.37)-(2.40) can be attained at 

one of the vertices of the solution region (2.38)-(2.40). 

Below we discuss the vertices. Notice that F(1)=f(1) = 

2

3

3

2
  ∈ (0.391, 0.392) and F( 2/3 ) ∈ (0.304, 0.305). If 

there exists three indices I ≠ k ≠ l ≠ i such that the 

corresponding constraint (2.39) holds as an equality, that is, 

xi + xk + xl = 3F( 2/3 ) ∈ (0.914, 0.915). It implies that xi > 

0.914 − xk − xl >0.914−0.392−0.392 = 0.13. Similarly, xk > 

0.13 and xl >0.13. We conclude that at most one of the 

inequalities (2.39) can hold as equality. If it is not true, there 

are at least two inequalities become equalities, for example, 

one contains indices I ≠ k ≠ l ≠ i and the other contains a 

different index j (j ≠ i,k,l ). Then xi + xk + xl = 3F( 2/3 ) ∈ 

(0.914, 0.915) and xj > 0.13. It follows that 

 
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n

i ljkii xxxxx
1

> 0.914 + 0.13 = 1.044 which is 

a contradiction due to the constraint (2.38). Let (xi) be a 

vertex of the feasible region (2.38)-(2.40). If all inequalities 

(2.39) are strict, (xi) is a vertex of the region (2.38) and 

(2.40). Since nF(1)≥3F(1)>1>2F(1), the vertex (xi) has two 

components with the value F(1), one component with the 

value x∗ = F(y∗) satisfying x∗ = F (y∗) =1−2F(1)∈ (0.21, 0.22) 

and the others are zeros. But the sum of the three positive 

elements is equal to F(1) + F(1) + (1 − 2F(1)) = 1, which 

violates one of the constraint (2.39). As a conclusion, at any 

vertex (Xi), only one of the inequalities (2.39) holds as an 

equality. Due to the exchangeability of the elements of (xi), 

without loss of generality, we can find the optimal solution 

from the vertices of the following feasible region: 
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There can be only two kinds of vertices. Each of the first 

kind has only four positive elements: F(1), F(1), 3F( 2/3 ) 

− 2F(1) and 1 − 3F( 2/3 ). Each of the second kind has 

only three positive elements: F(1), F(1) and 3F( 2/3 ) − 

2F(1). Clearly, the optimal vertex solution belongs to the 

first kind. The corresponding four positive elements of (yi) 

are hence 1, 1, y∗1 and y∗2, where y∗1 and y∗2 uniquely solve 

the following equations, respectively, 

F(y) = 3F ( 2/3 )− 2F(1),                                    (2.42)                                                     

F(y) = 1 − 3F ( 2/3 ),                                                  (2.43)                                                          

Therefore, the optimal objective values of Problem (2.32)-

(2.34) is D
2
(1

2
+1

2
+(y∗1)

2
+(y∗2)

2
) <2.48856D
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. In conclusion, 

we have proved for all valid ui1 that 
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Notice that the best known denominator on the right hand 

side of the inequality (2.23) before this article is 0.3972. 

Naturally, one can ask what the optimal (i.e., largest) 

denominator is. Interestingly, from the proof of Theorem 

2.1, especially from the solution structure of Problem (2.32)-

(2.34), we conjecture that there are only three nonzero 

elements ui1 in the maximum distance distribution. Hence, 

we turn to consider the special case n = 3. As a direct 

corollary of Lemma 2.1, we immediately have 

Proposition 2.2. Define B(D),D, lij , aim, uim as in Theorem 

1.1. Let n = 3. Then 
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The equality holds if and only if u11 = u21 = u31 = √3D/ 2. 

Based on the above observations, we raise the following 

conjecture for the general case. 

Conjecture 2.1. Define B(D),D, n, lij as in Theorem 1.1. 

Then 
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3   AN APPLICATION 
In this section, we use the similar approach to improve 

Proposition 1.2 where we have a direct application of our 

results for successful data transmission in wireless networks. 

Theorem 3.1. Define B(D),D, n, lij ,aim, uim, c1 as in 

Theorem 1.1. Then 
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and the function F(y) is defined in (2.35). 

Proof. The inequality 2
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the fact uim ≤ D. It is sufficient to prove
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. We assume n ≥ 3 because in the 

case n = 2 one has 2
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. Besides, the 

special case m = 1 exactly corresponds to Theorem 2.1. 

Below we always assume 2 ≤ m ≤ n−1. 

Denote the disk of diameter x by Bi(x), whose center is at 

point i. Define the following sets of disks 

Rm := {Bi (uim) : 1≤ i≤ n}, 2 ≤m≤ n−1.                           (3.3) 

There can be overlaps between some pairs of disks in Rm. 

But as shown in [1], any arbitrarily chosen point within 

B(D) can belong to at most m overlapping disks from Rm. 

Then for every 2 ≤m≤ n−1, we have 





n

i

imi DBmADBuBA
1

)4.3()),(())()((   

where A(X) is the area of a region X. Then similarly to the 

deduction of the inequality (2.28), we have 
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Also, we solve the following optimization problem (n ≥ 3) 

to obtain the upper bound of .
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where yi = 
D

u i1 for i = 1,… ,n and the function F(y) is defined 

in (2.35). Similarly to the analysis of Problem (2.32)-(2.34), 

we obtain an optimal solution to Problem (3.6)-(3.8), which 

is y
*
i =1 for i=1,…, 
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always has a unique solution cm (0,1). And then the 

optimal objective function value of problem (3.6)-(3.8) is (
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Remark 3.1. Notice that F(y) = f(y)y
2
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2
 for y∈ (0, 1). 
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Therefore, Theorem 3.1 strictly improves Proposition 1.2 

since 

.
1

2

1 c

m
c

c

m
m 







  

4 .CONCLUSION 
In this article, we improve the interpoint distance sum 

inequality for general m. The special case m = 1 of this 

inequality can be restated as follows. Let n points be 

arbitrarily placed in B(D), a disk in ℝ2
 having diameter D. 

Denote by lij the Euclidean distance between point i and j. In 

this article, we show  
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where the best known denominator on the right hand side of 

the inequality before this article is 0.3972. Naturally, one 

can ask what the optimal (or largest) denominator is. Based 

on some key observations, we raise a conjecture which 

states that the optimal denominator is 4/9, see Conjecture 

2.1. The special case n=3 is proved. 
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